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SUMMARY 

Computational difficulties arise in the non-linear free-surface problem for water waves both at large 
amplitudes when the crest becomes nearly singular and at small amplitudes when the wave is very close to the 
alternative uniform flow solution. Since the limiting wavelengths for small amplitude waves are known from 
the Stokes linearized theory, these are used in checking results for finite-amplitude programs. When Southwell 
and Vaisey’ first tried this, their methods gave an unexplained overestimate, by 6 per cent, of the limiting 
wavelength. This paper shows how coarse mesh effects can create such an overestimate, gives very accurate 
solutions at small amplitudes and considers accuracy in relation to the mesh for short and long waves. 

INTRODUCTION 

This paper is concerned with surface ‘water’ waves under gravity represented by two-dimensional 
ideal flow in a vertical plane. For the purpose of computation, travelling waves of permanent 
form are best considered in the frame of reference in which they are steady. They may then be 
regarded as stationary features on a moving stream with a fixed total volume flow rate Q 
(per unit width of the stream) and a fixed total head H .  We shall consider only waves over a 
flat horizontal bed so that H will be the height of the stagnation level above the bed. In the 
following all quantities will be non-dimensionalized with respect to distance H and time (H/g)”2 
where g is the gravitational acceleration. Consequently H and g will not appear explicitly and 1 
(unity) will be in their place. 

Various computational difficulties arise in the non-linear free-surface problem for water waves. 
At large amplitudes the crest may become nearly singular and requires careful resolution. At 
small amplitudes the wave solution competes with the alternative uniform flow in the 
computational process. Long waves of small amplitude carry an extra difficulty in that they are 
close to a uniform critical flow, where a singularity arises in the governing system and iteration 
methods2 

Numerical techniques capable of computing both linear and non-linear waves have been 
presented by several authors. Young3 gives a comprehensive review paper on subject. Some 
prominent developments have been due to Long~et-Higgins~-~ who has, among other 
techniques, used boundary integral methods. Schwartz’ introduced the use of Pade approximants 
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in his higher-order perturbation method. Cokelet' extended this technique to cover a wider range 
of wave amplitudes and depths in his accurate numerical computations. Accuracy is reported to 
deteriorate for the higher waves in shallow water and convergence may fail. Williams' has recently 
presented a technique to compute the highest waves together with a set of accurately computed 
results, but the algorithm cannot explicitly compute solitary waves. More recently Hunter and 
Vanden-Broeck" have presented accurate computations for high solitary waves confirming and 
extending previous results. The present authors have also obtained solutions for a wide range of 
small and large amplitude waves including conoidal and solitary waves but not cusped waves, 
using finite element and streamline shifting methods. However, the present paper is particularly 
concerned with the numerical difficulties encountered for small amplitude waves. 

Small amplitude waves can be treated by a first order perturbation to give the Stokesian waves 
theoretical results.' ' , 12  These are very useful in providing a check for computational methods. The 
results give a uniquely defined wavelength ;lo for limiting small amplitude waves, depending on the 
flow depth h: 

The flow depth h is the depth of the subcritical uniform stream with flow rate Q. In the limit 
as wave amplitude tends to zero this is the same as the average flow depth',12 and the still water 
depth,' which are used for reference with finite amplitude waves where they differ. Then h is 
the larger solution in (0,l) to 

and the wave speed relative to 'still water' in this limiting small-amplitude case and the non- 
dimensionalized units is 

A, = 4n(1 - h)/tanh(2xh/AO). (1) 

Q -  - 2h2(1 - h) (2 )  

c2 = Q2/h2 = 2(1 - h) ( 3 )  

On redimensionalizing, this last equation gives the celebrated formula for c2 in terms of g, h 
and A,, not involving H.  The perturbation methods have been extended, particularly by Cokelet,' 
to large amplitude waves. Much earlier Southwell and Vaisey' gave numerical results for waves 
and found an unexplained 6 per cent error in extrapolation of their results to compare with the 
limiting 2, in (I). There have been several computational results since, for example using finite 
element and boundary element  method^;'^*'^ but the error of Southwell and Vaisey' has remained 
unexplained. 

Tor0 ' made small-amplitude computations by both finite elements and a streamline shifting 
method, and examined the effects of mesh size on the extrapolation to A,. Here we present and 
extend these results to show how mesh coarseness leads to errors of the kind found by Southwell 
and Vaisey, overestimating I"., for short waves, and of the opposite type for long waves. We 
also give results with very accurate agreement with ;lo using a simple mesh with only a few 
layers, obtained from our variational streamline-shifting method.I6 

= (2,/2x)tanh (2nh/;10). 

COMPUTATIONAL DETAILS 

Recent finite element methods for ideal open channel  flow^'^.'^ have used a governing variational 
principle' ' of the form (in non-dimensionalized units) 

P P  

J = J J (+(v$)~ - y)dxdy = stationary, (4) 

in terms of the stream function 11/ over the flow region R where x and y are horizontal and 
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vertical co-ordinates. This gives both the internal flow and the free surface position by its natural 
stationary conditions. The authors have also used this approach successfully both with finite 
elements and with a new streamline shifting algorithm.16 

The corresponding free-boundary problem for t,6 comprises Laplace’s equation for $ in R, 
prescribed values for $ on the free surface and on the bed, appropriate boundary conditions on 
the inlet and outlet boundaries, and the free-surface pressure condition. In computing waves 
which are symmetric about their crests and troughs, the inlet and outlet conditions may be 
taken as requiring the flow to be horizontal. That is the normal derivative a$/& is taken to be 
zero on vertical inlet and outlet boundaries, which are taken to be at a crest and trough separated 
by half a wavelength. 

The variational formulation makes the problem amenable to computation by introducing a 
variable mesh able to fit to a variable position for the free surface. Then, apart from the prescribed 
values for $ on the bed and free surface, all the required equations are satisfied as natural 
conditions for the variational principle. 

The approach we have taken to find a wave solution is to set the length L of the computing 
region (inlet to outlet) suitably near half the known limiting wavelength A, for the prescribed 
flow rate Q, and then to start the iteration for the non-linear equations at an initial half-wave ap- 
proximation for the free-surface. In the course of the iterations the computed free-surface position 
adapts itself to satisfy the non-linear problem. If L has been appropriately set, the iterations 
converge to a half wave of a particular amplitude A related to the wavelength i = 2L and Q. 
In some cases, if the initial half-wave approximation is poorly chosen, or if L is set out of range 
of wavy solutions for the given Q, then the computed free-surface position usually ’slips’ into the 
uniform flow solution. In a few cases the crest and trough have changed places during the 
iterative process. 

By contrast Southwell and Vaisey ’ used finite differences without the variational approach, 
and they set the wave amplitude and allowed the wavelength to adjust to it by stretching the 
mesh horizontally. 

Both our calculations and those of Southwell and Vaisey lead to sets of values for (A ,  i) for 
a given Q and hence for a given h by (2). These are then extrapolated as A 4 0  to obtain a 
computed value for 2,. Different (A, d) curves are obtained from different meshes. On a given 
mesh the ( A ,  1”) curve approaches A = 0 with dR/dA also tending to zero, compatibly with a 
smooth transition to negative values of ‘amplitude’ as the crest changes into a trough. A parabolic 
relationship of the form 2 = do + kA2 fits the computed points well in the vicinity of A = 0 and 
the corresponding extrapolation 

Lo = (iJ; - n2A:) / (A;  - A:) ( 5 )  

is used to estimate do from two neighbouring computed points ( A l ,  A]), ( A 2 ,  &). 

theory, 
The first order perturbation field from the uniform flow has stream function as in the Stokes 

$ = - C  sin(2xx/i)sinh ‘ (2xy/A). (6) 

Consequently perturbation values, gradients and velocities, and truncation errors in the discretiz- 
ation of both V2$ and of streamline positions, are all greatest at the surface, diminishing towards 
the bed. The variation from surface to bed is very pronounced for short waves with i << h and it falls 
off exponentially from the surface. Mesh resolution is then important near the surface but not in the 
bulk of the region. The variation becomes less pronounced for longer waves and for d >> h the flow 
becomes nearly independent of y so that little vertical resolution is then needed. Indeed a single 
discrete stream layer gives very accurate results in the region of ‘shallow water’ waves. 
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In our finite element and moving streamline general methods we have obtained accurate results 
over a range of wavelengths using up to about eight flow layers of equal depths (for finite elements) 
or equal flow rate (for moving streamlines), without introducing surface refinements. 

Discretization errors in streamline interpolation on a variable grid will depend on velocity 
gradients. Discretization errors in Vz$ will depend on the fourth derivatives of $. In either case for 
fields of type (6) the contributions to these errors arising from discretization in x and y will have 
approximately equal bounds when the mesh spacings in x and y directions are equal to each other. 
Thus an optimal mesh will have spacings h, z h,, whether for long and short waves. For example 
on a rectangular mesh the dominant error in the common 5-point approximation to V2$ is, using 

e = - (hZd4$/ax4 + h,”a4$/ay4),f12 
(6)s 

= - ( 2 ~ / I ~ ) ~ ( h ;  + h,”)$/l2. 

On a non-rectangular mesh the condition h, z h, needs to be interpreted in a local sense. The 
meshes we use, which are commonly used in such problems, are in any case quasi-rectangular, 
following the streamlines (roughly for finite elements, precisely for streamline shifting) with 
vertical transversals. 

COMPUTATIONAL EXAMPLES 

Example 1 
The first example is the short wave case treated by Southwell and Vaisey’ with their 6 per 

cent overestimate for Io.  The flow depth, relative to the head H ,  is 11/12 and correspondingly 
Q 2  = 0.1400463 and 2, = 1.04723 by the Stokesian theory.’ 

Southwell and Vaisey gave their extrapolated solution as ;lo = 1.1 1, declaring that they had 
not succeeded in accounting for the discrepancy. 

Unusually they did not identify their mesh details for the calculation except for the number of 
stations they used. From their Figure 23 it would appear as if they took M = 14 for the longer 
waves and M = 10 for the shortest (highest) wave. It is possible that their result is affected by 
distorted meshes and inadequate surface resolution. Their highest wave has 2 = 0.88 whereas our 
recent computations give A = 0.881 1093 using 72 layers and 40 stations, which is about 1 per cent 
higher than the result we would obtain by interpolating Cokelet’s results. Hence their results are 
more accurate for the highest wave. 

The worsening of the solution by increasing the number M of stations (Figure 2) may be due to 
distortions ofthe rectangular ‘elements’. For the smaller amplitude waves dy z 1.1833, whereas dx 
ranges from 0.218 down to 0.121 1, The exponential variation of the horizontal velocity profile for 
this example in the short wave region requires better resolution in the y-direction (i.e. dy d dx) than 
in the x-direction. Thus it is possible that coarser meshes give better results provided that the right 
mesh ratios are observed. 

Figure 1 shows Southwell and Vaisey’s results together with several sets of our results from 
meshes with various numbers of discrete layers but a fixed number, 6, of stations in the x-direction. 
The 6 stations correspond to 5 mesh spaces over the half wave, so h, = 2/10 z 0.1 in the x-direction. 
This is adequate for accuracy to within half a per cent on A0. Comparable accuracy is then obtained 
from a similar y spacing which corresponds to about 9 layers. Taking 8 layers provides a very 
accurate result, extrapolating to 1.0489. Taking fewer layers increases the error of overestimation 
substantially. 

In Figure 2 some A,  2 curves are given for a fixed number of layers, 5, which is adequate only for 3 
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Figure 1. Variation of the computed ( A , I )  curves with the number N of layers and fixed number M of stations ( M  = 6)  

Figure 2. Variation of the computed (A ,  A) curves with the number M of stations and fixed number N of layers ( N  = 5 )  
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Figure 3. Effect of mesh refinement on the computed (A,  2) curve retaining the same space ratio 
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Figure 4. Effect of mesh refinement on the computed (A ,  A) curve near A, retaining the same space ratio 

or 4 per cent accuracy. Increasing the numbers of stations does not compensate for this and in fact 
tends to increase the estimate for 1,. 

The effect of refining the mesh while retaining the same space ratio is shown in Figures 3 and 4. 
Starting with an accurate and reasonably balanced mesh of 9 layers and 6 stations, that is 
h, % h h , % O 1 ,  this is halved to 18 layers and 11 stations and halved again to 36 layers and 21 
stations. The very accurate results are listed in Table I. 
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Table I Results for lo for halved meshes for Example 1 (exact 
solution 1, = 1.04723) 

Extra- 
No. of No. of polation 
stations layers for ;lo percentage 

6 9 1.04553 0.162 
11 18 1.04695 0.027 
21 36 1.047 17 OGO6 

- 

extrapolation to co 1.04721 0.002 

The extrapolations for I, in Table I are made from actual computations for I very close to I,, 
within 0.0004 with amplitudes below 0.005. The last row, extrapolation to infinity, extrapolates 
from the halving process assuming an error dependence on mesh space s of the form 

I(s) = I ,  + ks". 

2" = (I(s/2) - I(s/4))/(I(s) - A(s/2)) 

(7) 
Then differencing and dividing the results of Table I gives 

= 0.00 142/0,00022, 

giving an index a = ln(142/22)/ln 2 % 2.69, rather better than the a = 2 which might be expected 
from the linear elements or stream layers used. Consequently an extrapolated I, as mesh size tends 
to zero is obtained from (7) as 

I, = 1.04717 + (22/142)(142/120)0*00022 
= 1.04721 

This is still very slightly below the exact value, so perhaps the error is asymptotically like a =  2, 
not CI = 2.69 as from the three finite meshes. Extrapolating at a = 2 from the two finest grids would 
give 2, = 1.04724. 

Example 2 

This example gives a wavelength in the conoidal range, with h = 0.6839397, Q' = 02956893 
and I, = 8,5948397. Figure 5 shows a set of (A, A) points calculated from a mesh of 4 layers and 10 
stations, with h, = 2 and h, % 0.2 which is relatively coarse in the x-direction. Nevertheless, an 
accuracy of about 1 per cent is obtained for I,. Notice now that I increases with A, whereas for 
short waves I decreases with A (for waves of moderate height). 

Example 3 
We provide here a long shallow water example, since for small amplitudes these encounter the 

difficulty of the singularity of critical flow. This case has h = 06674855 (the critical value is 2/3), 
Q2 = 0.296295 and I, = 39.8013064. Three meshes were used, 90 stations and 3 layers, 180 
stations and 6 layers, and 360 stations and 12 layers, with virtually identical results for ( A ,  I) to 
five significant figures, as might be expected since we now have 90 or more divisions per half wave 
and h, z h,. Figure 6 shows the (A, A) curve obtained which gives E., with about 0.1 per cent 
error. Convergence difficulties were encountered at values of I very close to A,, but computations 
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Figure 5. Computed (A,  A} curve for mesh of 5 layers and 10 stations for example 2 in cunoidal region 
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Figure 5. Computed [A, 11) curve for 3 layers and 180 stations for example 3 in the shallow water region 
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worked down to A = 40.4 with amplitude as small as A = 0.0003. Results almost as accurate 
were obtained with a single-layer, 30 station mesh for this shallow water wave. 
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